Problem G - Limit 3 seconds
Security Badge

You are in charge of the security for a large building, with n rooms and m doors between the rooms. The rooms and doors are conveniently numbered from 1 to n, and from 1 to m, respectively.

Door i opens from room a_{i} to room b_{i}, but not the other way around. Additionally, each door has a security code that can be represented as a range of numbers $\left[c_{i}, d_{i}\right]$.

There are k employees working in the building, each carrying a security badge with a unique, integer-valued badge ID between 1 and k. An employee is cleared to go through door i only when the badge ID x satisfies $c_{i} \leq x \leq d_{i}$.

Your boss wants a quick check of the security of the building. Given s and t, how many employees can go from room s to room t ?

Input

The first line of input contains three space-separated integers n, m, and k ($2 \leq n \leq 1,000 ; 1 \leq m \leq$ 5,$000 ; 1 \leq k \leq 10^{9}$).

The second line of input contains two space-separated integers s and $t(1 \leq s, t \leq n ; s \neq t)$.
Each of the next m lines contains four space-separated integers a_{i}, b_{i}, c_{i}, and $d_{i}\left(1 \leq a_{i}, b_{i} \leq n\right.$; $1 \leq c_{i} \leq d_{i} \leq k ; a_{i} \neq b_{i}$), describing door i.

For any given pair of rooms a, b there will be at most one door from a to b (but there may be both a door from a to b and a door from b to a).

Output

Print, on a single line, the number of employees who can reach room t starting from room s.

Sample Input and Output

$\left.\begin{array}{|lll|l|}\hline 4 & 5 & 10 & 5 \\ 3 & 2 & & \\ 1 & 2 & 4 & 7 \\ 3 & 1 & 1 & 6 \\ 3 & 4 & 7 & 10 \\ 2 & 4 & 3 & 5 \\ 4 & 2 & 8 & 9\end{array}\right]$

