

You are in charge of the security for a large building, with n rooms and m doors between the rooms. The rooms and doors are conveniently numbered from 1 to n, and from 1 to m, respectively.

Door *i* opens from room a_i to room b_i , but not the other way around. Additionally, each door has a security code that can be represented as a range of numbers $[c_i, d_i]$.

There are k employees working in the building, each carrying a security badge with a unique, integer-valued badge ID between 1 and k. An employee is cleared to go through door i only when the badge ID x satisfies $c_i \leq x \leq d_i$.

Your boss wants a quick check of the security of the building. Given s and t, how many employees can go from room s to room t?

Input

The first line of input contains three space-separated integers n, m, and $k \ (2 \le n \le 1,000; 1 \le m \le 5,000; 1 \le k \le 10^9)$.

The second line of input contains two space-separated integers s and t $(1 \le s, t \le n; s \ne t)$.

Each of the next m lines contains four space-separated integers a_i , b_i , c_i , and d_i $(1 \le a_i, b_i \le n; 1 \le c_i \le d_i \le k; a_i \ne b_i)$, describing door i.

For any given pair of rooms a, b there will be at most one door from a to b (but there may be both a door from a to b and a door from b to a).

Output

Print, on a single line, the number of employees who can reach room t starting from room s.

Sample Input and Output

4 5 10	5
3 2	
1 2 4 7	
3 1 1 6	
3 4 7 10	
2 4 3 5	
4 2 8 9	
4 5 9	5
1 4	
1 2 3 5	
1 3 6 7	
1 4 2 3	
2 4 4 6	
3 4 7 9	