Problem D - Limit 2 seconds

Rainbow Roads

You are given a tree with n nodes (conveniently numbered from 1 to n). Each edge in this tree has one of n colors. A path in this tree is called a rainbow if all adjacent edges in the path have different colors. Also, a node is called good if every simple path with that node as one of its endpoints is a rainbow path.

Find all the good nodes in the given tree.
A simple path is a path that does not repeat any vertex or edge.

Input

The first line of input contains a single integer $n(1 \leq n \leq 50,000)$.
Each of the next $n-1$ lines contains three space-separated integers a_{i}, b_{i}, and $c_{i}\left(1 \leq a_{i}, b_{i}, c_{i} \leq n\right.$; $a_{i} \neq b_{i}$), describing an edge of color c_{i} that connects nodes a_{i} and b_{i}.

It is guaranteed that the given edges form a tree.

Output

On the first line of the output, print k, the number of good nodes.
In the next k lines, print the indices of all good nodes in numerical order, one per line.
For the first sample, node 3 is good since all paths that have node 3 as an endpoint are rainbow. In particular, even though the path $3-4-5-6$ has two edges of the same color (i.e. 3-4, 5-6), it is still rainbow since these edges are not adjacent.

Sample Input and Output

8		4
1	3	1
2	3	1
3	4	3
4	5	4
5	6	3
6	7	2
6	8	2

8		0
1	2	2
1	3	1
2	4	3
2	7	1
3	5	2
5	6	2
7	8	1

9		5
1	2	2
1	3	1
1	4	5
1	5	5
2	6	3
3	7	3
4	8	1
5	2	1

\(\left.\begin{array}{|ll|l|}\hline 10 \& \& 4

9 \& 2 \& 1

9 \& 3 \& 1

9 \& 4 \& 2

9 \& 5 \& 2

9 \& 1 \& 3

9 \& 6 \& 4

1 \& 8 \& 5

1 \& 10 \& 5

6 \& 7 \& 9\end{array}\right]\)| 7 |
| :--- |

