

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 19 of 20 11 November, 2017

Unsatisfying
Usually a computer scientist tries to satisfy some constraints. This time you will try to
make some logical statements unsatisfiable.

You will be given a list of logical statements of the following form:

 p1 | p2

~p2 | p3

 p3 | ~p4

Here '|', the disjunctive statement, stands for logical OR (the result is TRUE if either
proposition is TRUE, possibly both). '~' is negation, forcing the value to be the opposite
truth value.

To satisfy a list of logical statements, you must assign truth values (TRUE or FALSE) to
each variable such that all the given statements result as TRUE. Your task is to add
disjunctive statements to the list to make the list of statements unsatisfiable. But you
cannot use the negation symbol!

All disjunctive statements (both those given and ones you add) must have exactly 2
terms. The ones given can use negation, but the ones added cannot.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will begin with a line containing two integers n
and m (1 ≤ n,m ≤ 2,000), where n is the number of variables and m is the number of
disjunctions. The variables will be numbered 1..n.

Each of the next m lines will contain two integers a and b (1 ≤ |a|,|b| ≤ n), representing
the subscript in the variable. A negative value is the negated version of that variable.

Output

Output a single integer, which is the minimum number of disjunctive clauses to add to
make the list unsatisfiable. If it is not possible, output -1.

2017 ACM ICPC Southeast USA Regional Programming Contest

 Page 20 of 20 11 November, 2017

Sample Input Sample Output

2 1

1 2

-1

4 5

1 2

-1 -3

-2 3

3 -4

-2 -3

1

