Security Badges

You are in charge of the security for a large building. The building has a map, consisting of rooms, and doors between the rooms. Each door has a security code, which consists of a range of numbers, specified by a lower bound and an upper bound. Each employee has a uniquely numbered security badge. Only a security badge with a number within a door's range can go through that door.

Your boss wants a quick check of the security of the building. Given a starting room and a destination room, how many security badge numbers can go from the start to the destination?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will begin with a line containing three integers integer $\boldsymbol{n}(1 \leq \boldsymbol{n} \leq 1,000), \boldsymbol{m}(1 \leq \boldsymbol{m} \leq 5,000)$ and $\boldsymbol{k}\left(1 \leq \boldsymbol{k} \leq 10^{9}\right)$, where \boldsymbol{n} is the number of rooms, \boldsymbol{m} is the number of doors, and \boldsymbol{k} is the number of badges. The rooms are numbered 1..n and the badges are numbered 1..k.

The next line will contain two integers, \boldsymbol{s} and $\boldsymbol{d}(1 \leq s, \boldsymbol{d} \leq \boldsymbol{n})$, which indicate the starting room and destination room.

Each of the next \boldsymbol{m} lines will contain four integers, $\boldsymbol{a}, \boldsymbol{b}(1 \leq \boldsymbol{a}, \boldsymbol{b} \leq \boldsymbol{n}, \boldsymbol{a} \neq \boldsymbol{b})$, $\boldsymbol{m i n}$ and $\boldsymbol{m a x}$ ($1 \leq \boldsymbol{\operatorname { m i n }} \leq \boldsymbol{\operatorname { m a x }} \leq \boldsymbol{k}$) describing a door, where the door from room \boldsymbol{a} to room \boldsymbol{b} (and not back), and the badges range for the door is min..max, inclusive.

Output

Output a single integer, which is the number of badges that can go from the start room to the destination room.

Sample Input	Sample Output
4 5 10 3 2 1 2 4 7 3 1 1 6 3 4 7 10 2 4 3 5 4 2 8 9	5
$\begin{array}{\|llll\|} \hline 4 & 5 & 9 & \\ 1 & 4 & & \\ 1 & 2 & 3 & 5 \\ 1 & 3 & 6 & 7 \\ 1 & 4 & 2 & 3 \\ 2 & 4 & 4 & 6 \\ 3 & 4 & 7 & 9 \end{array}$	5

