A factorial n ! of a positive integer n is defined as the product of all positive integers smaller than or equal to n. For example,

$$
21!=1 \times 2 \times 3 \times \cdots \times 21=51090942171709440000
$$

It is straightforward to calculate the factorial of a small integer, and you have probably done it many times before. In this problem, however, your task is reversed. You are given the value of $n!$ and you have to
 find the value of n.

Input

The input contains the factorial n ! of a positive integer n. The number of digits of n ! is at most 10^{6}.

Output

Output the value of n.

Sample Input 1
 Sample Output 1

120	5

Sample Input 2

Sample Output 2

51090942171709440000	21

Sample Input 3

Sample Output 3
10888869450418352160768000000 27

This page is intentionally left blank.

