Problem A
ACM Contest Scoring

Time limit: 1 second

Our new contest submission system keeps a chronological log of all submissions made by each team during
the contest. With each entry, it records the number of minutes into the competition at which the submission
was received, the letter that identifies the relevant contest problem, and the result of testing the submission
(designated for the sake of this problem simply as right or wrong). As an example, the following is a
hypothetical log for a particular team:

3 E right

10 A wrong
30 C wrong
50 B wrong
100 A wrong
200 A right
250 C wrong

300 D right

The rank of a team relative to others is determined by a primary and secondary scoring measure calculated
from the submission data. The primary measure is the number of problems that were solved. The secondary
measure is based on a combination of time and penalties. Specifically, a team’s time score is equal to the
sum of those submission times that resulted in right answers, plus a 20-minute penalty for each wrong
submission of a problem that is ultimately solved. If no problems are solved, the time measure is 0.

In the above example, we see that this team successfully completed three problems: E on their first attempt
(3 minutes into the contest); A on their third attempt at that problem (200 minutes into the contest); and
D on their first attempt at that problem (300 minutes into the contest). This team’s time score (including
penalties) is 543. This is computed to include 3 minutes for solving E, 200 minutes for solving A with an
additional 40 penalty minutes for two earlier mistakes on that problem, and finally 300 minutes for solving
D. Note that the team also attempted problems B and C, but were never successful in solving those problems,
and thus received no penalties for those attempts.

According to contest rules, after a team solves a particular problem, any further submissions of the same
problem are ignored (and thus omitted from the log). Because times are discretized to whole minutes, there
may be more than one submission showing the same number of minutes. In particular there could be more
than one submission of the same problem in the same minute, but they are chronological, so only the last
entry could possibly be correct. As a second example, consider the following submission log:

7 H right

15 B wrong
30 E wrong
35 E right
80 B wrong
80 B right

100 D wrong

100 C wrong

300 C right

300 D wrong

This team solved 4 problems, and their total time score (including penalties) is 502, with 7 minutes for H,
35 4 20 for E, 80 4 40 for B, and 300 + 20 for C.

ACM-ICPC 2015 Mid-Central Regional Problem A: ACM Contest Scoring 1

Input

The input contains 7 lines for 0 < n < 100, with each line describing a particular log entry. A log entry has
three parts: an integer m, with 1 < m < 300, designating the number of minutes at which a submission was
received, an uppercase letter designating the problem, and either the word right or wrong. The integers
will be in nondecreasing order and may contain repeats. After all the log entries is a line containing just the

number —1.

Output

Output two integers on a single line: the number of problems solved and the total time measure (including

penalties).

Sample Input 1

Sample Output 1

3 E right 3 543
10 A wrong

30 C wrong

50 B wrong

100 A wrong

200 A right

250 C wrong

300 D right

-1

Sample Input 2 Sample Output 2
7 H right 4 502
15 B wrong

30 E wrong

35 E right

80 B wrong

80 B right

100 D wrong

100 C wrong

300 C right

300 D wrong

-1

ACM-ICPC 2015 Mid-Central Regional Problem A: ACM Contest Scoring

Problem B

The Agglomerator
Time limit: 6 seconds

In this problem, we are simulating the dynamics of moving objects. The objects are droplets that are modeled
in two dimensions as circles of various sizes, each moving at a constant velocity. When two circles touch
they combine (i.e., agglomerate) into a single circular droplet with an area equal to the sum of the areas
of the two combining droplets. The newly formed droplet’s position is the area-weighted average position
of the two droplets at the time of contact and its velocity is the area-weighted average velocity of the two
circles. (See the following example.)

The figure to the right illustrates the process of agglomera-
tion. In the top panel of that figure, we see the leftmost droplet
with radius 4 centered at position (—14,0) and with velocity
(1,0) moving toward a stationary droplet of radius 3 centered
at the origin. The two droplets make contact at time ¢ = 7.0 as
shown in the middle panel of the figure.

The droplet with radius 4 is centered at (—7,0) at the time
that the two droplets agglomerate into a single new droplet.
The two original droplets have areas 167 and 97, respec-
tively, and thus the new droplet has area 257 and thus ra-
dius 5. The z-coordinate of the aggolomerated droplet is equal
to 39 - (=7.0) + 5 - 0.0 = —4.48. The y-coordinate is -
%—g -0.0 + 2% - 0.0 = 0.0. By similar calculations, the velocity
of the aggolomeration is (0.64,0).

Given an initial configuration of droplets, your goal is to sim- ['
ulate their motion until reaching the final time at which an ag-
glomeration occurs (if any). All test sets have been crafted to
assure that:

e The original droplets do not touch each other.

e When a new droplet is formed from an agglomeration, the new droplet will not immediately be touch-
ing any other droplets. (In fact, it will be at least 0.001 away from any other droplets.)

e No two droplets will ever pass each other with only a single point of intersection. (In fact, changing
the radius of any drop by £0.001 will not effect whether it collides with another.)

e No two pairs of droplets will ever collide at precisely the same time. (In fact, all agglomerations will
be separated in time by at least 0.001.)

e No agglomerations will occur beyond time ¢ = 10°.

Input

The input consists of a description of the original configuration. The first line contains the original number
of droplets, 2 < IV < 100. This is followed by N lines of data, each containing five integers, x, y, vz, Uy,
r, respectively specifying the z-coordinate of the center, the y-coordinate of the center, the z-component
of the velocity, the y-component of the velocity, and the radius. These quantities are bounded such that
—10000 < @, y, vz, vy < 10000 and 1 < r < 100.

ACM-ICPC 2015 Mid-Central Regional Problem B: The Agglomerator 3

Output

Output a single line with two values k and ¢, where & is the number of droplets in the final configuration and
t is the time at which the final agglomeration occurred. If a data set results in no agglomerations, k will be
the original number of droplets and 0 should be reported as the time. The value of time should be reported

to have an absolute or relative error of no more than 1073,

Sample Input 1

Sample Output 1

2 1 1.0

-2 0201

20001

Sample Input 2 Sample Output 2
2 2 0.0

-2 0-201

2 0-211

Sample Input 3 Sample Output 3
4 1 2.0

-8 02 -22

0 -8 -2 2 2

2 80 -4 3

82 -403

Sample Input 4 Sample Output 4

4

-8 3
-2 4
2 =2
8 -2

o N DN W
O O O O
D NN

1 5.78474956

ACM-ICPC 2015 Mid-Central Regional Problem B: The Agglomerator

Problem C

Dance Recital
Time limit: 1 second

The Production Manager of a dance company has been tasked with determining the cost for the seasonal
dance recital. Because of their exceptional skills, many dancers will perform in more than one routine, but
this presents a problem; each dance routine incorporates a unique costume, so between routines, dancers
must report backstage to a Wardrobe Specialist, who can change the dancer’s costume in time to begin their
next scheduled routine.

A Wardrobe Specialist does a normal change on a dancer when the dancer performs in two routines that
are not consecutive, but when a dancer is required to perform in two consecutive routines, a quick change is
necessary. A Wardrobe Specialist charges a flat rate per recital that covers all normal changes, but charges
an exorbitant amount for each quick change. The Production Manager is responsible for keeping the show
under budget, and has hired you to write a program to report the minimum number of quick changes needed
for a given recital, given that the order of the dance routines could be changed.

To describe the cast of dancers that are to perform during a recital, each dancer is assigned an identifying
uppercase letter. (Fortunately, there are never more than 26 dancers, so characters from A to Z suffice.) To
describe a full recital, a list of individual routines is given, with a string of characters defining which dancers
appear in a routine. For example, consider the following recital description:

ABC
ABEF
DEF
ABCDE
FGH

The above list describes a recital with 5 dance routines, including a total of 8 individual performers (dancers
A through H). The first routine listed includes dancers {2, B, and C}. The second routine includes dancers
{A, B, E, and F'}. Notice that if these first two routines are performed in the above order, dancers A and B
will require a quick change between the routines. In fact, if these five routines are scheduled in the order
given above, a total of six quick changes are required. However, the schedule can be rearranged as follows:

ABEF
DEF
ABC
FGH
ABCDE

In this case, only two quick changes are required (those for E and F between the first two dances).

Input

The first line contains a single integer R, with 2 < R < 10, that indicates the number of routines in the
recital. Following that will be R additional lines, each describing the dancers for one routine in the form
of a nonempty string of up to 26 non-repeating, lexicographically sorted uppercase alphabetic characters
identifying the dancers who perform in that routine. Although a dancer’s letter will not appear more than
once in a single routine, that dancer may appear in many different routines, and it may be that two or more
routines have the identical set of dancers.

ACM-ICPC 2015 Mid-Central Regional Problem C: Dance Recital 5

Output

Output a single integer designating the minimum number of quick changes required for the recital.

Sample Input 1

Sample Output 1

5

ABC
ABEF
DEF
ABCDE
FGH

2

Sample Input 2

Sample Output 2

6
BDE
FGH
DEF
ABC
BDE
ABEF

3

Sample Input 3

Sample Output 3

4
XY7Z
XYZ
ABYZ
Z

4

ACM-ICPC 2015 Mid-Central Regional Problem C: Dance Recital

Problem D

Hidden Password
Time limit: 1 second

Insecure Inc. has decided to shift directions after a failed attempt at developing a new encryption standard.
Their new effort is a password system used to hide a password inside another string of characters we de-
note as a message. However, it is important that the message has a certain property relative to the hidden
password.

Let us assume that we denote the characters of the password as cics . . . cp (although those characters need
not be distinct). To be a valid message for the password, if you start from the beginning of the message and
search for any character from the set {c1,...,cp}, it must be that ¢; is the first that you find. Subsequently,
if you continue looking from that point of the message for any character from the set {ca, ..., cp}, it must
be that ¢, is the next that you find. Continuing in that manner, c3 must be the next character from the set
{es3,...,cp}, and so on until reaching cp.

For example, if the password is ABC, then the string HAPPYBIRTHDAYCACEY is a valid message.

e Notice that A is the first of the set {A, B, C} to appear in the message. (The initial H is not relevant.)
e Following the A that was found, the next occurrence from the set {B, C} is B.

e Following the B that was found, the next occurrence from the set {C} is indeed C.
(Note that the A in DAY is not relevant, since we are only looking for a C at this point, and the
additional A and C in CACEY are not relevant, because we have already completed the password with
the first C.)

However, for the password ABC, the string TRAGICBIRTHDAYCACEY is not a valid message.

e While the A is the first of the set {A, B, C} to appear in the string,
the next occurrence from the set {B, C} is C rather than B.

Also, the string HAPPYBIRTHDAY is not a valid message for the password ABC because the C never appears.

As an example with duplicate letters in the password, consider the password SECRET. For this password,
the string SOMECHORESARETOUGH is a valid message. In contrast, the string SOMECHEERSARETOUGH
is not a valid message, because an extraneous E is found at the point when an R is first expected.

Input
The input consists of a single line containing two strings. The first string is the password, having length P,
with 3 < P < 8. The second string has length S, with 10 < .S < 40. Both strings will consist solely of

uppercase letters. (That is, neither string can include whitespace, lowercase letters, digits, or other special
characters.)

Output

Output a single line with the word PASS if the second string is a valid message for the password, or FATL
otherwise.

ACM-ICPC 2015 Mid-Central Regional Problem D: Hidden Password 7

Sample Input 1 Sample Output 1
ABC HAPPYBIRTHDAYCACEY PASS
Sample Input 2 Sample Output 2
ABC TRAGICBIRTHDAYCACEY FAIL
Sample Input 3 Sample Output 3
ABC HAPPYBIRTHDAY FAIL
Sample Input 4 Sample Output 4
SECRET SOMECHORESARETOUGH PASS
Sample Input 5 Sample Output 5
SECRET SOMECHEERSARETOUGH FAIL

ACM-ICPC 2015 Mid-Central Regional Problem D: Hidden Password

Problem E

Kitchen Measurements
Time limit; 21 seconds

You are making a recipe and need to measure a precise volume of liquid. There are an assortment of cups
of varying volumes in your kitchen, however no cup has any markings on it other than to indicate its total
volume, and none of them match the volume that you want. You start with the biggest cup full of liquid
and, to make sure you know precisely how much volume you are working with at any point in time, you
consider steps in which you pour from any nonempty cup into another cup, always pouring until either the
cup you are pouring into becomes full, or the cup you are pouring from becomes empty (whichever occurs
first). As a simple example, assume you start with a full cup having capacity 5, and you have another cup
with capacity 2, but your goal is to have 3 units of the liquid in the largest cup. In this case, you can start
pouring from the larger cup to the smaller, stopping when the smaller one reaches its capacity of 2. This
will leave precisely 3 units in the larger cup. See Figure E.1(a).

9

gl 6 Goal: 8
3 2
0|_| {]l_l ol

E pour 6
6
u [/
ﬂu ﬂupoure g2 6 Goal: 8
8 I
3
1l - U &
e o I‘Ipour1 =R o Uupours
sl 6
_ 2 |_|3
0= i -pours U Uupoure
6 |_| 6
2 |_| 2
5i ’ oy ” i -pour2 oLl il l'Ir::'oure
L E [T I
H 2 0 0 iotal 17 0 o jota 7

(2) (b) (©)

Figure E.1: Pouring between cups

As another example, consider a case in which you have 4 cups with capacities 9, 6, 3, and 2, and you start
with the largest cup full, the rest empty, and a goal of ending with 8 units in the largest cup. For ease of
discussion we will refer to the cup with capacity 9 as the “9-cup” and similarly for the other sizes. You
notice that the 6-cup and 2-cup have combined capacity of 8, and so you could pour from the original 9-cup
to fill those two cups, then dump the remaining 1 unit from the 9-cup into the 3-cup, and finally pour the full
6-cup and 2-cup back into the 9-cup. See Figure E.1(b). In implementing this strategy, the total volume of
liquid poured would be 6 + 2 + 1 + 6 4+ 2 = 17. You could achieve this goal in another way: pour 3 units
from the 9-cup to the 3-cup (leaving 6 units in the 9-cup), then fill the 2-cup from the 3-cup (leaving 1 unit
in the 2 cup), and finally pour the full 2-cup back into the 9-cup, resulting in exactly 8 units in that cup. With
this strategy, the total volume poured is only 3 + 2 4+ 2 = 7. See Figure E.1(c).

As a final example, you start with cups of capacities 11, 10, 7, 4, and 2, with the 11-cup full, and a goal of
ending up with 10 units in the 11-cup. Obviously, you could fill the 10-cup, dump the remaining 1 unit into
another cup, and then pour from the full 10-cup back into the 11-cup, as illustrated in Figure E.2(a). These
three pours would mean transferring a total volume of 10 4+ 1 4+ 10 = 21. Figure E.2(b) shows a sequence
with more steps, but less liquid poured.

ACM-ICPC 2015 Mid-Central Regional Problem E: Kitchen Measurements 9

#id 10 Goal: 10

7
|_| (1.8
= ol old o o pour 7
u ;
4 |—|
11i 10 . Goal: 10 0= UUUUDOUYE
|_| ’ 4u si
2 2
—1% o= ULl Uupourm 0— ﬂLl I‘Ipour:e
|_| su 5H
1-10 o= ngupoum o Uuﬂupour‘i
- 1
1%_ H Thed ULl Uupourm mH o Ll Uupour4
— ol T “Ll ol iotal 21 o= 1L| “Ll ol yoral 19
(@) (b)

Figure E.2: More pouring

Input

The input consists of a single line of positive integers: n ¢y c2 ... ¢, V, where there are n cups, with
2 < n < b, having capacities satisfying 64 > ¢; > c2 > ... > ¢, > 1. The value V' < ¢; designates
the desired volume. You must start with largest cup (that with capacity c;) full of liquid and the other cups
empty, and the goal is to get exactly volume V' into the /argest cup.

Output

Output the minimum amount of liquid that must be poured to achieve the goal, or output impossible if
the goal cannot be achieved.

Sample Input 1 Sample Output 1
2523 2

Sample Input 2 Sample Output 2
496328 7

Sample Input 3 Sample Output 3
511 10 7 4 2 10 19

Sample Input 4 Sample Output 4
25 2 4 impossible
Sample Input 5 Sample Output 5
5 64 45 41 28 2 63 121

ACM-ICPC 2015 Mid-Central Regional Problem E: Kitchen Measurements 10

Problem F
Line Them Up

Time limit: 1 second

An eccentric coach asks players on the team to line up alphabetically at the start of practice. The coach does
not tell the players whether they need to line up in increasing or decreasing order, so they guess. If they
guess wrong, the coach makes them run laps before practice. Given a list of names, you are to determine if
the list is in increasing alphabetical order, decreasing alphabetical order or neither.

Input

The input consists of a single test case. The first line will contain the number N of people on the team
(2 < N < 20). Following that are N lines, each containing the name of one person. A name will be at least
two characters and at most 12 characters in length and will consist only of capital letters, and with no white
spaces (sorry BILLY BOB and MARY JOE). Duplicates names will not be allowed on a team.

Output

Output a single word: INCREASING if the list is in increasing alphabetical order, DECREASING if it is in
decreasing alphabetical order, and otherwise NEI THER.

Sample Input 1 Sample Output 1

5 DECREASING
JOE
BOB
ANDY
AL
ADAM

Sample Input 2 Sample Output 2

11 NEITHER
HOPE
ALT
BECKY
JULIE
MEGHAN
LAUREN
MORGAN
CARLI
MEGAN
ALEX
TOBIN

ACM-ICPC 2015 Mid-Central Regional Problem F: Line Them Up 11

Sample Input 3

Sample Output 3

4
GEORGE
JOHN
PAUL
RINGO

INCREASING

ACM-ICPC 2015 Mid-Central Regional Problem F: Line Them Up

12

Problem G

Mosaic
Time limit: 1 second
In this problem, we consider a special class of tile mosaics, as exemplified in Figure G.1. Each such mosaic
is built on a rectangular grid with a white background. Within each cell of the grid is either a square black

tile, a triangular black tile in one of the four orientations shown in Figure G.2, or nothing, in which case
the grid cell remains white. Furthermore, each mosaic is designed so that any shape that remains white is

Al 4OH
dEE BV
N VN
H. 4 4B

HA 4E\ 4

Figure G.1: An example of a mosaic

VU 4 A\

Figure G.2: Orientations for triangular tiles

To install such a mosaic, an artist starts by placing all the black squares. Remaining black triangles will later
be added by assistants in order to complete the pattern. To ensure that the assistants complete the mosaic
as envisioned, the artist marks some of the black tiles with a numeric label that indicates the number of
black triangles that share an edge with that square. (Black tiles without a label may have any number of
neighboring triangles.) The artists provides enough labels to ensure a unique design.

For example, Figure G.3 shows a starting configuration that uniquely defines the mosaic shown in Fig-
ure G.1. Given such a starting configuration, you are to determine the number of triangles needed to com-

plete the mosaic.

Figure G.3: A starting configuration that uniquely defines the mosaic from Figure G.1

ACM-ICPC 2015 Mid-Central Regional Problem G: Mosaic 13

Input

The input consists of a single test case. The first line contains two integers, 1 < W < 24 and 1 < H < 18,
that designate the width and height of the mosaic, respectively. Following that are H additional lines, each
with W characters. The characters 0, 1, 2, 3, and 4 designate black squares with the indicated constraint
on the number of neighboring triangles, and the character ’«’ designates a black square without such a
constraint. All remaining locations will be designated with a’.’ character and must either be left empty or
covered with a single black triangle. Inputs have been chosen so that they define a valid and unique mosaic.

Output

Display the number of triangles used in the mosaic.

Sample Input 1 Sample Output 1
9 5 20
.Ox
2.
2000, 1
2..3.
Sample Input 2 Sample Output 2
55 14
2...%
*...0
Sample Input 3 Sample Output 3
18 10 92
*1 *2.0 ... * %2
2 e e 3.
A e
4d..x..... *
2% *3..... 3.....
..... Keww e akk, L 3%
3..... 3..3..
.............. 4...
... ... 0
1x2..... 2% 1%

' Our inspiration for such mosaics is www.nikoli.com/en/puzzles/shakashaka.

ACM-ICPC 2015 Mid-Central Regional Problem G: Mosaic 14

Problem H

Pyro Tubes
Time limit: 13 seconds

The Impressively Calculable Pyrotechnics Company has been contracted to provide certain stage effects for
a rock festival. In particular, fire is requested (because fire makes the crowd go wild). In order to pull this
off, the main stage is outfitted with a series of tubes, each specially calibrated to deliver a flame burst of a
particular luminosity. In all, there are 18 numbered tubes arranged on the stage as follows:

Figure H.1: Pyro tube numbering

Tube 1, when fired, produces a luminosity of 1. More generally, the luminosity produced by Tube /N (when
N > 1) is double the luminosity produced by Tube N — 1.

To achieve a specific luminosity, multiple tubes can be activated to fire simultaneously. The luminosity
achieved is the sum of the individual luminosities of the activated tubes when fired. The total luminosity is
represented by a single integer L. The software used to control the system accepts the value of L as an input
argument, and determines which tubes need to be activated to achieve that luminosity (and which remain
deactivated).

’f(| = Activated

N

! LY
f \

= Deactivated

Figure H.2: Pyro tube states

The design of the system ensures that a given L-value can be achieved by firing a unique set of activated
tubes. While the system under normal conditions can precisely generate the expected luminosity, it will
occasionally encounter technical problems (sticky valves, clogged tubes, etc.) that temporarily prevent it
from firing a particular requested set of tubes, so it can activate and deactivate tubes to fire a different set.

ACM-ICPC 2015 Mid-Central Regional Problem H: Pyro Tubes 15

Figure H.3 shows two groups of tubes that have two differences: Tube 7 is activated on the left and deacti-
vated on the right, while Tube 8 is deactivated on the left and activated on the right.

L =453583 L = 45457

OQ@
YYWLUYC

Figure H.3: Pyro tube states for requested luminosity (left) and 2 state changes (right)

)

& C
OO0

CO
O
OO

/O ./
& C

\
/
N
_./’
~
Y

@
C
S

)
J

OO
C

C

Figure H.4 illustrates tube states for a requested L-value of 45 393 on the left, while Tube 10 is activated in
the group on the right to produce an L-value of 45 905:

L= 45393

QC}@ /
DO Q

Figure H.4: Pyro tube states for requested luminosity (left) and 1 state change (right)

-
1
o
on
[{=}
2
on

h
)

(e

C O
OC

OO
@,
OO
O

)
A
~
J

ole

¢
O0Oc¢C
OO0

-\\
.\
S
~
vy

S
¢

During the course of designing the stage effects, the producers of the rock festival have been made aware
of possible technical issues that require the state of the tubes to be changed, resulting in an L-value that
is different than what was originally planned. This will be OK, as long as the tube states can be quickly
adjusted, and is brighter than the original L-value. Because they are obsessed with micromanagement, the
producers will provide a list of L-values they have scheduled for the show, and they request a report be
generated that provides, for each original value given, the count of all alternative L-values that meet the
following 3 requirements:

1. The alternate L-value must be greater than the original L-value.
2. The alternate L-value must be another value in the given list.

3. The alternate L-value must be achieved by changing no more than 2 tube states from the original.

ACM-ICPC 2015 Mid-Central Regional Problem H: Pyro Tubes 16

Input

The requested L-values will be indicated, one per line in increasing order, such that 1 < L < 250000 for

each L-value (and thus with at most 250 000 such values). A single —1 will appear on the last line to signify

the end of input.

Output

For each original L-value, in the order given, output a line of the form L:C' where integer L is the original

requested luminosity value, and integer C' is the quantity of alternative values meeting the 3 requirements

given above.

Note: some strategies may produce correct results, but will not finish in the allotted time; a time-efficient

solution is critical.

Sample Input 1

Sample Output 1

1 1:3

3 3:1

8 8:2

10 10:0

25 25:0

-1

Sample Input 2 Sample Output 2
2083 2083:0
15093 15093:3
15285 15285:2
25147 25147:2
31413 31413:3
47797 47797:2
49723 49723:1
55989 55989:1
58171 58171:0
60085 60085:0
95670 95670:0
-1

ACM-ICPC 2015 Mid-Central Regional Problem H: Pyro Tubes

17

This page is intentionally left blank.

Problem |

Word Clouds Revisited
Time limit; 2 seconds

When we last visited with Tagg Johnson, he was developing software to create images known as word
clouds. Although we will not consider all the details, a word cloud provides a visual representation of
textual data in which the size of the bounding box for each word depends on the relative frequency of that
word in the original text.

Tagg was surprised to stumble upon an oddity involving his algorithm for laying out words in rows. A
maximum width is specified for the size of a word cloud, and Tagg’s desire is to place the entries into the
cloud in a way that minimizes the overall height. Entries must be placed in a predetermined order, with each
subsequent entry either placed horizontally to the right of the previous entry, or else to the far left of a new
row. The height of each row is equal to the maximum height of all entries placed in that row, and the overall
height of the cloud is equal to the sum of the row heights.

Because his goal is to minimize the height, Tagg’s original algorithm would place each entry in the same
row as the previous entry, unless it did not physically fit because of the given limit on the width of the cloud.
As an example, Figure 1.1 shows the layout Tagg’s original algorithm produces for a particular cloud with a
maximum width of 260 units.

135x48
97xd3 95%28
130x23

Figure I.1: Tagg’s original placement of entries for his word cloud

The first, second, and third entries are placed in the first row (totaling width 238). Then the fourth and fifth
entries are placed in a row together (totaling width 193). The sixth entry is by itself on a final row. The
overall height of this cloud is 48 + 43 + 23 = 114 units (as the first row has height 48, the second row has
height 43, and the third row has height 23).

However, Tagg later realized that an even better cloud was possible for this same data set, as shown in
Figure [.2. By placing the first and second entries in the first row, the third and fourth entries in the second
row, and the fifth and sixth entries in a third row, the overall height of the cloud is only 23448428 = 99 units
(while still respecting the overall limit of 260 on the width of the cloud).

135x48 97x43
95x28 130x23

Figure 1.2: An optimal placement of the entries from Figure I.1

ACM-ICPC 2015 Mid-Central Regional Problem I: Word Clouds Revisited 19

So now Tagg wants to redesign his software so that, given a list of words and a specific maximum width, it
builds a word cloud with the minimum height.
Input

The first line contains two integers, /N and C, where 2 < N < 5000 is the number of entries to be placed,
and 150 < C' < 1000 is the maximum width for the cloud. Following that are /N additional lines, each
specifying the bounding box for one entry, in the order in which those entries must be laid out in the cloud.
The line describing an entry contains two integers w and h, specifying the respective width and height of
the entry, such that 10 < w < 150 and 10 < A < 150.

Output

Output the minimum height that is required for the word cloud under the restrictions given above.

Sample Input 1 Sample Output 1

6 260 99
65 23
38 11
135 48
97 43
95 28
130 23

Sample Input 2 Sample Output 2

3 309 200
150 100
10 10

150 100

ACM-ICPC 2015 Mid-Central Regional Problem I: Word Clouds Revisited 20

