

ACM ICPC

UM Qualification

 October 1, 2016

Problems

A Combined Celery

B Chessboard Path Sums

C Chessboard Independent Sums

D Balls and Bins

E Super Mario

F Fighting Queens

G Box Stacking

H Happy Party

I Compository Number Sequence

J Market Pioneer

Problem A

Combined Celery

Dorothy Grumples is a student at Combined Celery (CC) Company. As with any

company, CC has had some very good times as well as some very bad time.

Dorothy does trending analysis of the stock prices for CC, and she wants to

determine the largest decline in stock prices over various time spans. For

example, if over a span of time the stock prices were 19, 12, 13, 11, 20 and 14,

then the largest decline would be 8 between the first and fourth price. If the last

price had been 10 instead of 14, then the largest decline would have been 10

between the last two prices.

Dorothy has done some previous analyses and has found that the stock price over

any period of time can be modeled reasonably accurately with the following

equation:
𝑝𝑟𝑖𝑐𝑒(𝑘) = 𝑝 ∗ (𝑠𝑖𝑛(𝑎 ∗ 𝑘 + 𝑏) + 𝑐𝑜𝑠(𝑐 ∗ 𝑘 + 𝑑) + 2)

where 𝑝 𝑎 𝑏 𝑐 and 𝑑 are constants. Dorothy would like you to write a program

to determine the largest price decline over a given sequence of prices. Figure A.1

illustrates the price function for Sample Input 1. You have to consider the prices

only for integer values of k.

Figure A.1: Sample Input 1. The largest decline occurs from the fourth to the seventh

price.

Input

The input consists of a single line containing 6 integers 𝑝 (𝑝)
𝑎 𝑏 𝑐 𝑑 (𝑎 𝑏 𝑐 𝑑) and 𝑛 (𝑛) The first 5 integers are

described above. The sequence of stock prices to consider is price(1),

price(2), ... , price(n).

Output

Display the maximum decline in the stock prices. If there is no decline, display

the number 0.000000. Your output should have exactly six digits to the right of

the decimal point.

Sample Input 1

42 1 23 4 8 10

Sample Output 1

104.855110

Sample Input 2

100 432 406 867 60 1000

Sample Output 2

399.303813

Problem B

Chessboard Path Sums

Alice and Bob are having a discussion about who is the best problem solver at

UM. They decide to determine this by solving each other‟s toughest problems.

Alice decides to go first.

Alice: You are given an 𝑛 chessboard, where each position contains a

positive integer. You are allowed to walk from the top left corner to the bottom

right corner once, and at every position, you are only allowed to move one step

right, or one step down. We‟d like to know the maximum sum possible of all the

values touched on an optimum path.

Bob: Hah! This is an easy dynamic programming problem. Let 𝑓 𝑖 represent

the maximum possible sum from the top left corner to position (𝑖) then...

Alice: OK, I already know you got it. But what happens if you do the walk twice?

Bob: Then the answer is of course twice as much!

Alice: No, if you visit the same position twice, that value will only be counted

once.

Bob: Er... OK, then this is still a dynamic programming problem. Let

𝑓 𝑖 𝑘 represent the maximum possible sum of two paths, both start from

the top left corner, and one ends at (𝑖) and the other ends at (𝑘)

Alice: OK, this is correct. But what if you can go 𝑡 times?

Bob: We can still use dynamic programming. Let ...

Alice: Wait a second. How large is your array then?

Bob: It is (𝑛) . Well, I can bring it down to (𝑛) ((𝑛)) .

Alice: But it is still exponential to the input size.

Bob: Yes...

Bob is now asking for your help!

Input

The first line contains three integers, 𝑛 𝑡 (𝑛 𝑡).

The following 𝑛 lines, each contains integers. All the integers are positive

and smaller than or equal to 1000.

Output

A single integer: the maximum possible sum of 𝑡 paths.

Sample Input

3 3 2

1 2 1

2 3 0

1 0 1

Sample Output

10

Problem C

Chessboard Independent Sums

After spending too much time on the mishap with problem B, Bob finally

realized that something was missing!

Bob: This is unfair! You give me your problem, but you don‟t have to solve my

problem!

Alice: OK, then, what is your problem?

Bob: Let‟s do the chessboard sum again. We still have a chessboard of size

𝑛 , but now you are allowed to select whatever the number of positions you

want, and calculate the sum of these values. You want to maximize the sum.

Alice: Then obviously, the solution is to take all the positive numbers.

Bob: Nah, that would be too easy. In my problem, you are not allowed to select

two numbers 𝑎 𝑏 at the same time if these two positions are neighbors.

Alice: You mean these two positions share an edge?

Bob: Yes. For example, (2) and () are neighbors, but ()

and (2 2) are not, because they share a common point, but not an edge. If (2)

contains 𝑎 , () contains 𝑎 , then you cannot take 𝑎 𝑎 at the same

time. Note that taking 𝑎 would not affect 𝑎 at all, even if when 𝑎 = 𝑎 .

Alice: OK, this problem looks interesting.

Now Alice is a bit stuck. Help Alice solve the problem!

Input

The first line contains two integers: 𝑛 (𝑛).

The following 𝑛 lines, each contains integers. All the integers will be

between 0 and 1000 inclusively.

Output

A single integer: the maximum possible sum, where no two numbers selected for

the sum are adjacent to the other (adjacent here means sharing an edge).

Sample Input

3 3

1 2 1

2 3 0

1 0 1

Sample Output

7

Explanation

7 = 1 + 1 + 3 + 1 + 1

None of these numbers are adjacent to each other and they form maximum

possible sum.

Problem D

Balls and Bins

We have 𝑛 bins, and bin 𝑖 currently has 𝑖 balls in it. We want to do some

operations so that the final configuration is 𝑛 and also minimize the cost.

Here are the three operations we can do.

 Make a new ball, and put it in a bin 𝑖. The cost is X.

 Take out a ball from a bin, and destroy it. The cost is Y.

 Take a ball from bin 𝑖, and put it in bin . The cost is 𝑖 .

Input

First line contains four integers: 𝑛 (𝑛 2
).

Second line contains n integers, 𝑛 , which represents the initial

configuration.

Third line contains n integers, 𝑛 , which represents the final

configuration.

For all inputs, we have 𝑖 𝑖 .

Output

A single integer represents the minimum cost.

Sample Input

4 2 2 1

1 1 1 0

0 0 0 5

Sample Output

10

Problem E

Super Mario

You are working on a new awesome Super Mario game clone and everything is

going along splendidly, except one little thing… In your game Super Mario exits

are marked with pipes of various widths and your game character Mario must be

able to fit through the pipe in order to advance to the next level. To keep your

screen game space as spacious as possible to populate it with Goombas, you

decide to design you pipes to be as small as possible in width, yet still just wide

enough to accommodate your Super Mario character.

For your game sprite character, you will use a polygonal approximation, where

Super Mario (modeled as a polygon) must fit into the pipe. Before hopping into

the pipe, he can be rotated by any arbitrary angle in order to minimize the

required width of the pipe. Once inside the pipe he will travel downwards and

will not shift or rotate until he reaches the next level.

The following figure shows how Mario is first rotated so that he fits into the pipe.

Your task is to compute the smallest pipe width that will allow a given Mario

polygon to pass through the pipe opening and onto the next level.

Input

The input contains several test cases. Each test case starts with a line containing

an integer 𝑛 (𝑛) the number of points in the polygon that models

Super Mario.

The next 𝑛 lines then contain pairs of integers and ()
giving the coordinates of the polygon vertices in order. All points in one test case

are guaranteed to be mutually distinct and the polygon sides will never intersect.

(Technically, there is one inevitable exception of two neighboring sides sharing

their common vertex. Of course, this is not considered an intersection.)

The last test case is followed by a line containing a single zero.

Output

For each test case, display its case number followed by the smallest pipe width

through which Super Mario can escape to the next level. Display the minimum

width with exactly two digits to the right of the decimal point, rounding up to

the nearest multiple of 1/100.

Follow the format of the sample output.

Sample Input

3

0 0

3 0

0 4

4

0 10

10 0

20 10

10 20

0

Sample Output

Case 1: 2.40

Case 2: 14.15

Problem F

Fighting Queens

In the game of chess, the queen is a powerful piece. It can attack by moving any

number of spaces in its current row, in its column or diagonally.

In the eight queens puzzle, eight queens must be placed on a standard 8×8

chessboard so that no queen can attack another. The center figure below shows

an invalid solution; two queens can attack each other diagonally. The figure on

the right shows a valid solution. Given a description of a chessboard, your job is

to determine whether or not it represents a valid solution to the eight queens

puzzle.

Figure 1: Queen movement (left), invalid solution (center), valid solution (right).

Input

Input will contain a description of a single chessboard, given as eight lines of

eight characters each. Input lines will consist of only the characters „.‟ and „*‟.

The „.‟ character represents an empty space on the board, and the „*‟ character

represents a queen.

Output

Print a single line of output. Print the word “valid” if the given chess board is a

valid solution to the eight queens problem. Otherwise, print “invalid”.

Sample Input

*.......

......*.

....*...

.......*

.*......

...*....

.....*..

..*.....

Sample Output

valid

Problem G

Box Stacking

Description

Leslie sells boxes. All her boxes are rectangular but come in many different sizes.

Leslie wants to create a really eye-catching display by stacking, one on top of

another, as many boxes as she can outside her store. To maintain neatness and

stability, she will always have the sides of the boxes parallel but will never put a

box on top of another if the top box sticks out over the bottom one. For example,

a box with base 5-by-10 cannot be placed on a box with base 12-by-4.

Of course the boxes have three dimensions and Leslie can orient the boxes

anyway she wishes. Thus a 5-by-10-by-12 box may be stacked so the base is

5-by-10, 5-by-12, or 10-by-12.

For example, if Leslie currently has 4 boxes of dimensions 2-2-9, 6-5-5, 1-4-9,

and 3-1-1, she could stack up to 3 boxes but not all four. (For example, the third

box, the first box, then the last box, appropriately oriented. Alternatively, the

second box could replace the third (bottom) box.)

Leslie‟ stock rotates, so the boxes she stacks outside change frequently. It‟s just

too much for Leslie to figure out and so she has come to you for help. Your job is

to find the most boxes Leslie can stack up given her current inventory. Leslie will

have no more than 10 different sized boxes and will use at most one box of any

size in her display.

Input

A positive integer 𝑛 (𝑛) will be on the first input line for each test case.

Each of the next 𝑛 lines will contain three positive integers giving the

dimensions of a box. No two boxes will have identical dimensions. None of the

dimensions will exceed 20. A line with 0 will follow the last test case.

Output

For each test case, output the maximum number of boxes Leslie can stack using

the format given below.

Sample Input

4

2 2 9

6 5 5

1 4 9

3 1 1

3

2 4 2

1 5 2

3 4 1

0

Sample Output

Case 1: 3

Case 2: 3

Problem H

Happy Party

A company is going to hold a party, and any employee can attend. The company

structure is as such that there is a single big boss, and aside from the boss, each

employee has a direct supervisor.

It has been established that each employee has a certain happiness value when

they go to the party and that each employee is happiest when they have no direct

supervisor present at the party. When the employee and their direct supervisor

are together at the party, that employee‟s happiness is 0.

Find a way to maximize the sum of all employees‟ happiness values. You can

assume that there is a single big boss, and that the company employees form a

tree-like structure.

Input

The first line contains an integer 𝑛 (𝑛 2), which is the number of

employees in the company. The second line contains 𝑛 integers 𝑓 (𝑖 𝑛).

The 𝑖-th integer represents the direct supervisor of employee 𝑖. If for some 𝑖,
𝑓 = , then that employee is the big boss of the company. There is exactly one

𝑓 = . The third line contains 𝑛 integers, which represents the happiness of

all employees. The happiness is between 0 and 1000.

Output

A single integer represents the maximum happiness.

Sample Input

7

-1 1 1 2 2 3 3

2 8 10 5 5 4 4

Sample Output

20
Note: In this case employees #3, 4, 5 can show up (without their direct bosses) thereby maximizing happiness

value across all employees.

Problem I

Compository Number Sequence

We shall call a number sequence “compository” when it has a property of having

each adjacent pair of integers in the sequence sum to a composite number.

Composite number is one that is non-prime.

We want to find such a sequence after rearranging a sequence of consecutive

integers 𝑛 𝑛 + 𝑛 + 2 . For example, if 𝑛 = and = , one

such compository sequence is 1, 3, 5, 4, 2, 6, 9, 7, 8, 10. This is also the

lexicographically first such sequence. We can call this a 2-compository sequence,

since each 2 adjacent numbers sum to a composite number.

We can extend this definition by defining a degree 𝑑-compository sequence as

one where all consecutive subsequences of length 2 𝑑 sum to a composite

number.

For example, the previously stated sequence satisfies 2-compository definition,

but not a 3-compository, since the subsequence 5, 4, 2 sums to 11, which is a

non-composite number. The lexicographically-first 3-compository sequence is

1, 3, 5, 4, 6, 2, 10, 8, 7, 9.

Input

Input will consist of multiple input sets. Each set will consist of three integers,

𝑛 and 𝑑 on a single line. The values of 𝑛 and 𝑑 will satisfy 𝑛
 , and 2 𝑑 . The line 0 0 0 will indicate end of input and

should not be processed.

Output

For each input set, output a single line consisting of a comma-separated list of

integers forming a degree d-compository sequence (do not insert any spaces and

do not split the output over multiple lines). In the case where more than one such

sequence exists, print the lexicographically first one (i.e., output the one with the

lowest first value; in case of a tie, the lowest second value, etc.). In the case

where no d-compository sequence exists, output

No compository sequence exists.

Sample Input

1 10 2

1 10 3

1 10 5

40 60 7

0 0 0

Sample Output

1,3,5,4,2,6,9,7,8,10

1,3,5,4,6,2,10,8,7,9

No compository sequence exists.

40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54

Problem J

Market Pioneer

Richard is a market Pioneer. He dives into a new market called UM16.

Initially, he has 𝐹 units of funding money. There are a total of 𝑀 stocks

Richard may buy or sell. For 𝑖th stock, Richard can buy it for 𝐶 units of

money. Later he can sell it, earning 𝐸 units of money.

Note that it is guaranteed that 𝐸 is always strictly smaller than 𝐶 . Richard

can buy and sell stocks in any order, but each stock can only be bought and sold

once.

As you may have noticed, the best way to earn money is to do nothing!

However, that is not the spirit of the market! Richard can only buy a stock if he

has enough money for it. Compute the maximum number of stocks Richard can

buy and sell.

Input

The first line contains two integers, 𝐹 (𝐹) and 𝑀 (𝑀).

The second line contains 𝑀 integers. The 𝑖-th integer represents money cost by

the 𝑖-th stock. Each number in this line is between 1 and 5000.

The third line contains 𝑀 integers. The 𝑖-th integer represents money earned by

the 𝑖-th stock. Each number in this line is between 0 and 5000.

Output

A single integer represents the maximum number of buys and sells that Richard

can complete.

Sample Input 1

10 1

10

0

Sample Output 1

1

Sample Input 2

12 4

4 8 2 1

2 0 0 0

Sample Output 2

3

