ACM ICPC

UM Practice Contest 2

September 23

Problems

A Maximal Rectangle
B Best Time for Stock
C Longest Increasing Subsequence
D Optimal Binary Search Tree

Problem A
 Maximal Rectangle

Description

Given a 2D binary matrix filled with 0 's and 1 's, find the largest rectangle containing only 1's and return its area.

For example, given the following matrix:
10100
10111
11111
10010
Return 6.

Input

The first line contains two integers $n, m(1 \leq n, m \leq 2000)$.
The following n lines, each contains a binary string of length m.

Output

A single integer, represents the maximum size of the 1 rectangle.

Sample Input

45

10100

10111
11111

10010

Sample Output

6

Problem B

Best Time for Stock

Description

Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete at most k transactions.

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Input

The first line contains two integers $n, k(1 \leq n \leq 2000)$.

The following n lines contains n integers, represents the stock price for n days. All integers are positive and smaller than 10000.

For B-easy, $k=1$.

For B-hard, $1 \leq k \leq 2000$.

Output

Output the maximum profit.

Sample Input

51

12345

Sample Output

4

Problem C
 Longest Increasing Subsequence

Description

The longest Increasing Subsequence (LIS) problem is to find the length of the longest subsequence of a given sequence such that all elements of the subsequence are sorted in increasing order. For example, length of LIS for \{ 10 , $22,9,33,21,50,41,60,80\}$ is 6 and LIS is $\{10,22,33,50,60,80\}$.

Input

First line contains an integer n, which represents the length of the sequence.
The following line contains n integers in the sequence: $s[1], s[2], \ldots, s[n]$.
For all inputs, $0 \leq s[i] \leq 100000000$
For C-easy, $1 \leq n \leq 2000$.
For C-hard, $1 \leq n \leq 200000$.

Output

The length of the longest increasing subsequence.

Sample Input

9
10229332150416080

Sample Output

Problem D

Optimal Binary Search Tree

Description

An optimal binary search tree (BST) is a binary search tree which provides the smallest possible search time for a given access probabilities.

Given N nodes with access probabilities $\left(p_{1}, \ldots, p_{n}\right)$ in order, find a binary search tree such that the in-order traversal of the BST is the given order, and for all possible resulting depth $\left(d_{1}, \ldots, d_{n}\right), \sum_{i=1}^{n} d_{i} \cdot p_{i}$ is the minimum. The root of the tree has depth 1.

Input

The first line contains an integer n.
The next line contains n real number $p_{1}, \ldots, p_{n}\left(0 \leq p_{i} \leq 1\right)$. Note that the sum of all probabilities may not always equal to 1 , but it does not matter.

For D-easy, $1 \leq n \leq 200$.
For D-hard, $1 \leq n \leq 2000$.

Output

A single real number represents the minimum sum, with exactly two digits to the right of the decimal point.

Sample Input

3
00.050 .950

Sample Output

1.05

Note

The followings are the only five possible layout of the tree. The minimum possible search time is $0.95 \times 1+0.05 \times 2=1.05$.

