Problem D
 Balls and Bins

We have n bins, and bin i currently has $x[i]$ balls in it. We want to do some operations so that the final configuration is $y[1 \ldots n]$, and also minimize the cost. Here are the three operations we can do.
$>$ Make a new ball, and put it in a bin i. The cost is X.
$>$ Take out a ball from a bin, and destroy it. The cost is Y.
$>$ Take a ball from bin i, and put it in bin j. The cost is $Z \times|i-j|$.

Input

First line contains four integers: $n, X, Y, Z(1 \leq n \leq 200,0 \leq X, Y, Z \leq 10000)$. Second line contains n integers, $x[1], \ldots, x[n]$, which represents the initial configuration. Third line contains n integers, $y[1], \ldots, y[n]$, which represents the final configuration.
For all inputs, we have $0 \leq x[i], y[i] \leq 10$.

Output

A single integer represents the minimum cost.

Sample Input

4	2	2	1
1	1	1	0
0	0	0	5

Sample Output

10

This page is intentionally left blank.

