

H•Brocard Point of a Triangle

The Brocard point of a triangle ABC is a point P in the triangle chosen so that: $\angle \mathrm{PAB}=\angle \mathrm{PBC}=\angle \mathrm{PCA}$ (see figure below).

The common angle is called the Brocard angle. The largest Brocard angle is $\pi / 6$ which is the Brocard angle for an equilateral triangle (the Brocard point is the centroid of the triangle).

Write a program to compute the coordinates of the Brocard point of a triangle given the coordinates of the vertices.

Input

The first line of input contains a single integer $\boldsymbol{P},(\mathbf{1} \leq \boldsymbol{P} \leq \mathbf{1 0 0 0 0})$, which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input. It contains the data set number, \boldsymbol{K}, followed by the six space separated coordinate values $\mathrm{Ax}, \mathrm{Ay}, \mathrm{Bx}, \mathrm{By}, \mathrm{Cx}, \mathrm{Cy}$ of the vertices of the triangle. The vertices will always be specified so going from A to B to C and back to A circles the triangle counter-clockwise. Input coordinates are floating point values.

Output

For each data set there is a single line of output. The single output line consists of the data set number, \boldsymbol{K}, followed by a single space followed by the \boldsymbol{x} coordinate of the Brocard point, followed by a single space followed by the \boldsymbol{y} coordinate of the Brocard point. Coordinates should be rounded to five decimal places.

Sample Input	Sample Output
3	11.404560 .82890
	21.560470 .74902
$\begin{array}{lllllll}2 & 0 & 0 & 3 & 0 & 0 & 4\end{array}$	33.876990 .40167
$\begin{array}{lllllllllll}3 & 3.1 & 0.2 & 4.3 & 0.4 & 0 & 0.8\end{array}$	

