
Problem D
Debugging

Time limit: 3 seconds

Picture in public domain via Wikimedia Commons

Your fancy debugger will not help you in this
matter. There are many ways in which code
can produce different behavior between debug
and release builds, and when this happens, one
may have to resort to more primitive forms of
debugging.

So you and your printf are now on your own
in the search for a line of code that causes
the release build to crash. Still you are lucky:
adding printf statements to this program af-
fects neither the bug (it still crashes at the
same original code line) nor the execution
time (at least not notably). So even the naive
approach of putting a printf statement before
each line, running the program until it crashes, and checking the last printed line, would work.

However, it takes some time to add each printf statement to the code, and the program may have
a lot of lines. So perhaps a better plan would involve putting a printf statement in the middle of
the program, letting it run, seeing whether it crashes before the added line, and then continuing
the search in either the first or second half of the code.

But then again, running the program may take a lot of time, so the most time-efficient strategy
might be something in between. Write a program that computes the minimum worst-case time
to find the crashing line (no matter where it is), assuming you choose an optimal strategy for
placing your printf statements.

We’re releasing the new version in five hours, so this issue is escalated and needs to be fixed
ASAP.

Input

The input consists of one line with three integers:
• n (1 n 106), the number of code lines;
• r (1 r 109), the amount of time it takes to compile and run the program until it

crashes;
• p (1 p 109), the time it takes to add a single printf line.

You have already run the program once and therefore already know that it does crash somewhere.

Output

Output the worst-case time to find the crashing line when using an optimal strategy.

NWERC 2015 Problem D: Debugging 7

Sample Input 1 Sample Output 1

1 100 20 0

Sample Input 2 Sample Output 2

10 10 1 19

Sample Input 3 Sample Output 3

16 1 10 44

NWERC 2015 Problem D: Debugging 8

