The Magical 3

Three is a magic number.
Yes it is; it's a magic number.
Somewhere in the ancient, mystic trinity,
You get three as a magic number.

- Schoolhouse Rock

According to Pythagoras and the Pythagorean School, the number 3 - which they called triad - is the noblest of all digits, as it is the only positive integer to equal the sum of all of the positive integers below it $(1+2=3)$, and it is the only positive integer whose sum with those below equals the product of them and itself $(1+2+3=1 \times 2 \times 3)$.

Your task is to find the magic - the magic 3, that is - when it can be the last digit in a representation of a positive integer in some base. Consider, for example, the number 11. It can be represented as ONE-THREE (13) in base 8 and as TWO-THREE (23) in base 4. You are to write a program that will find the smallest base for a given positive integer where the input number's representation in that base ends in 3 . This is possible for all integers greater than 6 .

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. Each test case will consist of a single line with a single integer $\boldsymbol{n}\left(7 \leq \boldsymbol{n}<2^{31}\right)$.

Output

For each test case, output a single integer representing the smallest base in which the input \boldsymbol{n} ends with a 3 .

Sample Input	Sample Output
11	4
42	13
9876	9

