Hilbert Sort

Sorting numerical data not only makes it easy to search for a particular item, but also makes better use of a CPU's cache: any segment of data that's contiguous in memory will describe a set of items that are similar in some sense. Things get more complicated if our data represents points on a 2D grid. If points $(\boldsymbol{x}, \boldsymbol{y})$ are sorted by \boldsymbol{x}, breaking ties by \boldsymbol{y}, then adjacent points will have similar \boldsymbol{x} coordinates but not necessarily similar \boldsymbol{y}, potentially making them far apart. To better preserve distances, we can sort the data along a space-filling curve.

The Hilbert curve starts at the origin ($\mathbf{0}, \mathbf{0}$), finishes at $(\mathbf{s}, \mathbf{0})$, in the process traversing every point in axis-aligned square with corners at ($\mathbf{0}, \mathbf{0}$) and (\mathbf{s}, \mathbf{s}). It has the following recursive construction: split the square into four quadrants meeting at ($s / \mathbf{2}, \boldsymbol{s} / \mathbf{2}$). Number them 1 to 4 , starting at the lower left and moving clockwise. Recursively fill each of them with a suitably rotated and scaled copy of the full Hilbert curve.

Start with a single point at $(\boldsymbol{s} / \mathbf{2}, \mathbf{s} / \mathbf{2})$. Then, repeat these steps:

- Scale and copy the current construction into each of the 4 quadrants.
- Rotate quadrant 1 by -90 degrees and flip it vertically, so that the start of the curve is closest to the lower left corner ($\mathbf{0 , 0} \mathbf{0}$).
- Rotate quadrant 4 by 90 degrees and flip it vertically, so that the end of the curve is closest to the lower right corner ($\mathbf{s}, \mathbf{0}$).
- Now, connect the end of the curve in quadrant 1 to the start of the curve in quadrant 2 , connect the end of quadrant 2 to the start of quadrant 3 , and the end of quadrant 3 to the start of quadrant 4.

Here are the first two iterations:

The Hilbert Curve is built by repeating this construction infinitely many times. The following diagram shows the first six steps of building the Hilbert Curve:

Given some places of interest inside of a square region, sort them according to when the Hilbert curve visits them, starting from (0,0). Without going into gory detail about Fractal theory, note that making \boldsymbol{s} odd guarantees that all integer points are visited just once, so their visitation order in relation to each other is unambiguous.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input contains two space-separated integers n and $\boldsymbol{s}\left(1 \leq \boldsymbol{n} \leq 100,000,1 \leq \boldsymbol{s}<10^{9}, \boldsymbol{s}\right.$ is odd). The next \boldsymbol{n} lines describe locations of interest by space-separated integers \boldsymbol{x} and $\boldsymbol{y}(0 \leq \boldsymbol{x}, \boldsymbol{y} \leq s)$. No two locations will share the same position.

Output

Output the \boldsymbol{n} ordered pairs, one per line, with \boldsymbol{x} and \boldsymbol{y} separated by a space, Hilbertsorted according to their positions.

ใcI International Collegiate

Sample Input	Sample Output
1425	55
55	105
510	1010
520	510
105	520
1010	1020
1015	1015
1020	1515
155	1520
1510	2020
1515	2010
1520	1510
205	155
2010	205
2020	

