

Grid

You are on an *n*x*m* grid where each square on the grid has a digit on it. From a given square that has digit *k* on it, a *Move* consists of jumping exactly *k* squares in one of the four cardinal directions. A move cannot go beyond the edges of the grid; it does not wrap. What is the minimum number of moves required to get from the top-left corner to the bottom-right corner?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input contains two space-separated integers n and m (1 $\le n$,m ≤ 500), indicating the size of the grid. It is guaranteed that at least one of n and m is greater than 1.

The next n lines will each consist of m digits, with no spaces, indicating the $n \times m$ grid. Each digit is between 0 and 9, inclusive.

The top-left corner of the grid will be the square corresponding to the first character in the first line of the test case. The bottom-right corner of the grid will be the square corresponding to the last character in the last line of the test case.

Output

Output a single integer on a line by itself representing the minimum number of moves required to get from the top-left corner of the grid to the bottom-right. If it isn't possible, output -1.

Sample Input

Sample Output

2 2	2
11	
11	
2 2	-1
22	
22	
5 4	6
2120	
1203	
3113	
1120	
1110	