Coverage

A cellular provider has installed \boldsymbol{n} towers to support their network．Each tower provides coverage in a 1 km radius，and no two towers are closer than 1 km to each other．The coverage region of this network is therefore the set of all points that are no more than 1 km away from at least one tower．The provider wants as much of this region as possible to be connected，in the sense that a user at any point within a connected subregion can travel to any other point within the connected subregion without having to exit the subregion．Their current installation of towers may or may not already form a single connected region，but they have the resources to build one more tower wherever they want，including within 1 km of an existing tower．Given that the provider is able to build one more tower，what is the maximum number of towers（including the new one）that can be included within a single connected subregion of coverage？

Input

Each input will consist of a single test case．Note that your program may be run multiple times on different inputs．The first line of input consists of a single integer $\boldsymbol{n}(1 \leq \boldsymbol{n} \leq 5,000)$ denoting the number of existing towers．Next follow n lines，each with 2 space－ separated floating－point numbers \boldsymbol{x} and $\boldsymbol{y}(0 \leq \boldsymbol{x}, \boldsymbol{y} \leq 100,000)$ ，denoting the location of a tower in km ．It will be guaranteed that the optimal number of towers will not change even if the coverage radius of all the towers is increased or decreased by $10^{-6} \mathrm{~km}$ ．

Output

Ouput a single integer，denoting the maximum number of towers that can be within a single connected subregion of the network after installing one additional tower．

Sample Input	Sample Output
5	
1.0	1.0
3.1	1.0
1.0	3.1
3.1	3.1
4.2	3.1

