

Greater New York Programming Contest

Yale University New Haven, CT

H • Powers of Pascal

The Pascal matrix is the (infinite) matrix defined by (zero based row and column):

Pascal[row, column] = Comb(row, column) for 0 <= column <= row</pre>

and zero otherwise, where Comb(n, k) is the number of combinations of n things taken k at a time (the binomial coefficient).

1	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0
1	2	1	0	0	0	0	0	0	0
1	3	3	1	0	0	0	0	0	0
1	4	6	4	1	0	0	0	0	0
1	5	10	10	5	1	0	0	0	0
1	6	15	20	15	6	1	0	0	0
1	7	21	35	35	21	7	1	0	0
1	8	28	56	70	56	28	8	1	0
1	9	36	84	126	126	84	36	9	1
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

For this problem, you will write a program to compute entries in powers of the *Pascal* matrix:

$$Pascal^{P} = Pascal \times Pascal \times ... \times Pascal (P factors)$$

Since the matrix is lower triangular, all powers are lower triangular and only the upper left \mathbf{n} by \mathbf{n} corner is used in computing coefficients in the upper left \mathbf{n} by \mathbf{n} corner of the power.

Greater New York Programming Contest

Yale University New Haven, CT

Input

The first line of input contains a single integer K, $(1 \le K \le 1000)$, which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input containing four space-separated decimal integers. The first integer is the data set number. The second integer is the power, $P (1 \le P \le 100,000)$, to which to raise the Pascal matrix. The third and fourth integers give the row number, R, and the column number, C, of the desired entry $(0 \le C \le R \le 100,000)$.

Output

For each data set there is a single line of output. The line consists of the data set number, a single space, which is then followed by the requested entry of the requested Powers of the Pascal matrix. Input values will be restricted so results will not overflow a 64-bit integer value.

Sample Input	Sample Output			
3	1 56			
1 1 8 3	2 8759577256290			
2 9 21 13	3 19999800000000			
3 200 100000 99998				